Efficient Clustering for Gene Expression Data

نویسنده

  • Jacinth Salome
چکیده

In the past decade there have been advance in technologies, the amount of biological data such as DNA sequences and microarray data have been increased tremendously. To obtain knowledge from the data, explore relationships between genes, understanding severe diseases and development of drugs for patterns from the databases of large size and high dimensionality. Information retrieval and data mining are powerful tools to extract information from the databases and/or information repositories. The integrative cluster analysis of both clinical and gene expression data has shown to be an effective alternative to overcome the abovementioned problems. In this paper, we focus on how to improve the searching and the clustering performance in genomic data from commonly used clustering techniques. In the proposed gene clustering technique, firstly, the high dimensionality of the microarray gene data is reduced using LPP. The LPP is chosen for the dimensionality reduction because of its ability of preserving locality of neighborhood relationship. Secondly, through performance experiments on real data sets, the proposed method fuzzy C-means is shown to achieve higher efficiency, clustering quality and automation than other clustering method. General Terms Data Mining, information retrieval, Bio-informatics et al.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

خوشه‌بندی داده‌های بیان‌ژنی توسط عدم تشابه جنگل تصادفی

Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...

متن کامل

به کارگیری روش‌های خوشه‌بندی در ریزآرایه DNA

Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

به کارگیری خوشه‌بندی دوبعدی با روش «زیرماتریس‌های با میانگین- درایه‌های بزرگ» در داده‌های بیان ژنی حاصل از ریزآرایه‌های DNA

Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...

متن کامل

Clustering Gene Expression Data using Neural Networks

Microarray technology can be used to collect gene expression data in bulk. In order to be able to deal with this large amount of data that can now be produced, an efficient method of computing the relationships of this data must be constructed. Some attempts at applying neural networks have been employed for this task. For this project we intend to implement several neural network architectures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012